- separable hypotheses
- разделяемые гипотезы
Англо-русский словарь по исследованиям и ноу-хау. Е.Г. Коваленк. 2015.
Англо-русский словарь по исследованиям и ноу-хау. Е.Г. Коваленк. 2015.
Corps Parfait — En mathématiques et plus particulièrement en algèbre dans le contexte de la théorie de Galois, un corps parfait est un corps dont toutes les extensions algébriques sont séparables. Les corps parfaits sont utiles pour la théorie de Galois, car les … Wikipédia en Français
MATIÈRE — Pour l’action comme pour la connaissance, la «matière» est toujours première. Première dans ses mixtes et ses confusions, lorsqu’elle résiste aux projets de façonnage; première dans sa présence originelle, dès qu’apparut le projet d’une… … Encyclopédie Universelle
Corps parfait — En mathématiques et plus particulièrement en algèbre dans le contexte de la théorie de Galois, un corps parfait est un corps commutatif dont toutes les extensions algébriques sont séparables. Les corps parfaits sont utiles pour la théorie de… … Wikipédia en Français
Groupe De Galois — Évariste Galois 1811 1832 En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d une extension de corps L sur un corps K est le groupe des automorphismes de corps de L lais … Wikipédia en Français
Groupe de Galois — Évariste Galois 1811 1832 En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant … Wikipédia en Français
Groupe de galois — Évariste Galois 1811 1832 En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d une extension de corps L sur un corps K est le groupe des automorphismes de corps de L lais … Wikipédia en Français
Histoire des groupes de Galois — Groupe de Galois Évariste Galois 1811 1832 En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d une extension de corps L sur un corps K est le groupe des automorphismes de corps de L… … Wikipédia en Français
MÉTHODE — Le mot «méthode», d’origine grecque, signifie chemin: celui, tracé à l’avance, qui conduit à un résultat. La méthode ou bien se rapporte à la meilleure façon de conduire un raisonnement, ou bien est un programme de recherche (Aristote: Essayer… … Encyclopédie Universelle
Peirce, Charles Sanders — American pragmatism Peirce Cheryl Misak INTRODUCTION Charles Sanders Peirce (1839–1914), one of America’s greatest philosophers, mathematicians, and logicians, was a difficult and not altogether pleasant character. That, combined with what the… … History of philosophy
Glossaire Topologique — Cette page est une annexe de : Topologie Glossaire topologique Annexe de : Topologie Ceci est un glossaire de quelques termes utilisés en topologie. Ce glossaire est divisé en deux parties. La première … Wikipédia en Français
Glossaire topologique — Cette page est une annexe de : Topologie Glossaire topologique Annexe de : Topologie Ceci est un glossaire de quelques termes utilisés en topologie. Ce glossaire est divisé en deux parties. La première … Wikipédia en Français